

特性描述

TM512AC0 是DMX512 差分并联协议LED驱动芯片,并带解码转发功能,可通过D0口转换成单线归零码信号,D0输出数据可直接控制我公司800Kbps速率IC,可转发192个通道数据。TM512AC0解码技术精准解码DMX512信号,可兼容并拓展DMX512协议信号,TM512AC0对传输频率在200Kbps~1000Kbps以内的DMX512信号完全自适应解码,无需进行速率设置,寻址可达4096通道。TM512AC0内置E2PROM,无需外接,同时支持在线写码,它主要为建筑物装饰和舞台灯光效果LED照明系统而设计,某一个芯片的异常完全不影响其他芯片的正常工作,维护简单方便。本产品性能优良,质量可靠。

功能特点

- ▶ 兼容并扩展DMX512(1990)信号协议
- ▶ 控制方式:差分并联,最大支持 4096 通道寻址
- ▶ 高速DMX512 增补算法专利,对传输速率 200Kbps~1000Kbps的DMX512 信号可完全自适应解码
- ▶ 纯转发模式,自身不带灯,画面数据全部转发驱动我公司TM1804,TM1925D,TM1926D等归零码单线通讯芯片
- ▶ 内置E2PROM, 无需外接E2PROM
- ▶ AB线在线写码,可一次性自动写码,支持先安装后写码方式
- ▶ E2 地址码双备份模式,部分E2 损坏也不影响地址码读取
- ▶ 内置 5V稳压管
- ▶ 写码成功后驱动所转发的IC亮白灯,新地址生效不需要重新上电
- ▶ 输出通道逐步延时,降低突波电流干扰
- ▶ 工业级设计,性能稳定
- ▶ 封装形式: SOP8

应用领域

点光源,线条灯,洗墙灯,舞台灯光系统,室内外视频墙,装饰照明系统

©Titan Micro Electronics www.titanmec.com

内部结构框图

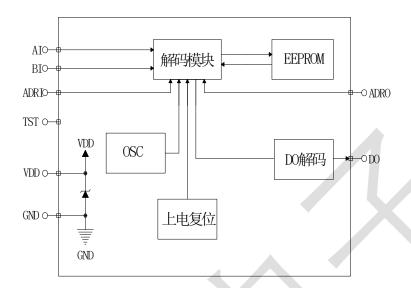


图 1

管脚排列

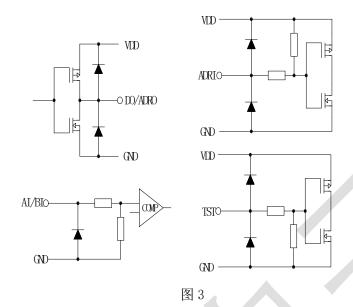


图 2

管脚功能

引脚名称	引脚序号	I/0	功能说明
VDD	8		电源正极
GND	1		电源负极
ADRO	2	0	地址写码线输出
DO	3	0	解码转发通道,可控制我司 18 系列和 19 系列IC
TST	4	I	测试脚, 内置下拉
ADRI	5	I	地址写码线输入,内置上拉
AI	6	I	差分信号,正,内置上拉
BI	7	I	差分信号,负,内置下拉

输入/输出等效电路

集成电路系静电敏感器件,在干燥季节或者干燥环境使用容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路预防处理措施,不正当的操作焊接,可能会造成 ESD 损坏或者性能下降,芯片无法正常工作。

工作条件

1、极限工作条件

在 25℃下测试, VDD=	5V, 如无特殊说明	TM512AC0	单位
参数名称	参数符号	极限值	平 位
逻辑电源电压	Vdd	+5.5~+6.5	V
逻辑输入电压	Vi	- 0.5∼Vdd+0.5	V
工作温度	Topt	- 45∼ +85	$^{\circ}\!\mathbb{C}$
储存温度	Tstg	- 55∼ +150	$^{\circ}\!\mathbb{C}$
抗静电	ESD	8000	V
封装功耗	Pd	400	mW

- (1) 芯片长时间工作在上述极限参数条件下,可能造成器件可靠性降低或永久性损坏,天微电子不建议实际使用时任何一项参数达到或超过这些极限值。
- (2) 所有电压值均相对于系统地测试。

2、推荐工作条件

在-40℃~+85℃下测试,VDD=5V, 如无特殊说明		TM512AC0			单位		
	参数名称	参数符号	测试条件	最小值	典型值	最大值	平位
	逻辑电源电压	Vdd		3.8	5. 5	6	V
	高电平输入电压	Vih		0. 7Vdd		Vdd	V
	低电平输入电压	Vil	_	0	_	0.3Vdd	V

芯片参数

1、电气特性

在-40℃~+85℃下》	TM512AC0			单位		
参数名称	参数符号	测试条件	最小值	典型值	最大值	
低电平输出电流	Iol	Vo =0.4V, DO, ADRO	10	-	_	mA
高电平输出电流	Ioh	Vo =4V, DO, ADRO	10	-	-	mA
输入电流	Ii		_	-	±1	μД
差分输入共模电压	Vcm				12	V
差分输入电流	Iab	VDD=5V			28	μД
差分输入临限电压	Vth	OV <vcm<12v< td=""><td>-0.2</td><td></td><td>0. 2</td><td>V</td></vcm<12v<>	-0.2		0. 2	V
差分输入迟滞电压		Vcm=OV		70		mV
差分输入阻抗	Rin			280		KΩ
高电平输入电压	Vih	ADRI	0.7Vdd	-		V
低电平输入电压	Vil	ADRI	_	_	0. 3Vdd	V
动态电流损耗	IDDdyn	VDD=5V	无负载		4	mA
消耗功率	PD	TA=25℃	_	400	_	mW
热阻值	Rth(j-a)			80	190	$^{\circ}$ C/W

功能说明

1、通信数据协议:

TM512ACO 数据接收兼容标准DMX512(1990)协议及拓展DMX512协议,传输速率 200Kbps~1000Kbps 自适应解码。协议波形如下所示:芯片是AI、BI差分输入的,图中画出的是AI的时序波形,BI与AI相反。

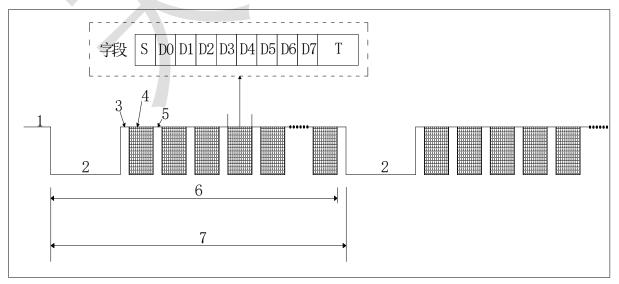


图 4

www.titanmec.com

DMX512 解码及驱动 IC

TM512AC0

标号	描述	最小值	典型值	最大值	单位
	比特率	200	500	1000	Kbps
	位时间	1	2	5	μs
S	起始位	1	2	5	μs
DO∼D7	8 位数据	1	2	5	μѕ
T	2 位停止位	2	4	10	μs
1	复位前标记	0		1000000	μѕ
2	复位信号	88		1000000	μs
3	复位后标记	8		1000000	μs
4	字段 (notel)	11	22	55	μs
5	字段之间的占	0		1000000	μs
6	数据包的长度	1024		1000000	μs
7	复位信号间隔	4096		1000000	μs

Note1:字段共11位,包括0起始位,8位数据位和2位停止位。其中0起始位是低电平,停止位是高电平,数据位中的数据是0,则相应的时间段是低电平,数据是1,则相应的时间段是高电平。0起始位停止位及数据位的位时长须相同。

2、IC接收说明:

- 1. 当AI, BI线上出现复位信号时, IC进入接收准备状态。地址计数器清 0。
- 2. 数据包中的第1字段是起始字段,其8位数据必须是"0000_0000",该字段不作为显示数据。用于显示的有效字段从第二字段开始,DMX512数据包的第二字段是有效数据的第一字段。IC可自适应的数据传输速率是200Kbps~1000Kbps。不同速率对应的字段时长不同,但不管传输频率是200Kbps/500Kbps/1000Kbps,只要确保所有有效字段的时长与起始字段的时长相同即可。
- 3. IC根据其E2 中地址确定截取DMX512 数据包中对应的字段。如芯片地址为 0000_0000_0000 则从数据包的第一有效字段开始截取,地址 0000_0000_0001 从第二有效字段开始截取。芯片截取字段全部用于转发,共截取并转发 192 个字段。
- 4. IC接收数据时,2个复位信号间隔不能小于4ms,即使并联点数极少的情况下,帧频也不能大于250Hz。

3、控制器发送数据注意事项:

- 1. 对于标准DMX512 (1990) 协议来说, 假如控制器的一个分端口接 512 个通道, 也就是 170 个像素点, 要达到刷新率是 30Hz,那么每帧的时间宽度 33. 33ms,传输 1bit的时间为 $4\,\mu$ s,则有效数据时间宽度 为 $88+4\,\mu$ s*11bit*512=22. 7ms,那么每一帧数据之间的时间间隔为 33. 33-22. 7 = 10. 63ms。在这时间间隔内数据线保持高电平,直到下一个复位信号。
- 2. TM512AC2 要求控制器每个数据包的复位信号码间隔不能小于 4ms,即帧频最高不能高于 250Hz, 否则可能无法正常显示画面。

4、写码注意事项:

- 1. 写码完成后,收到新地址码的IC驱动RGBW端口 25%灰度输出,新写入的地址码生效。
- 2. 写码完成后先不要将AB线取下,应用写码器自带的专用测试程序进行测试,以确认写码是否完全正确。
- 3. 写码器AI, BI端口上的地址输入端线在写码完成后应从写码器上拔出,以免写码器失常时误写码。写码线拔出后悬空并用绝缘胶布包裹即可,无需专门接地。

5、差分总线连接注意事项:

- 1. 控制器与IC之间以及IC与IC之间须共地,以防止过高的共模电压击穿IC,可用屏蔽层做共地线可靠连接多个IC节点,并在一点可靠接地,不能双端或多端接地。
- 2. 板上AI线和BI线至IC间串接的保护电阻须一致,并且板上AIBI线从焊盘至IC的走线方式须尽量一致。
- 3. AI、BI总线尽可能采用屏蔽双绞线(尤其在强电和弱电走线槽共用工程,发射塔附近或雷电较多的地区),以减少干扰及雷电冲击。用普通超5类屏蔽双绞线即可,但要注意购买铜线。
 - 4. 485 总线中485 节点要尽量减少与主干之间的距离,一般建议485 总线采用手牵手的总线拓扑

结构。星型结构会产生反射信号,影响 485 通信质量。如果在施工过程中必须要求 485 节点离 485 总线主干的距离超过 30cm以上距离,建议使用 485 中继器作出一个 485 总线的分叉。如果施工过程中要求使用星型拓扑结构,应使用 485 集线器。

5. 485 总线随着传输距离的延长,会产生回波反射信号,如果 485 总线的传输距离较长,建议施工时在 485 通讯结束端处的AI、BI线上并接一个 120 欧姆的终端匹配电阻。

应用信息

1、应用图 1: TM512AC0 转发应用

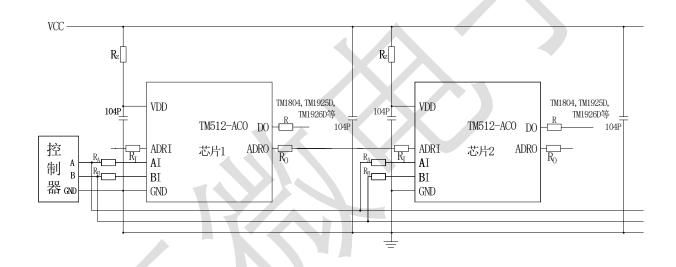
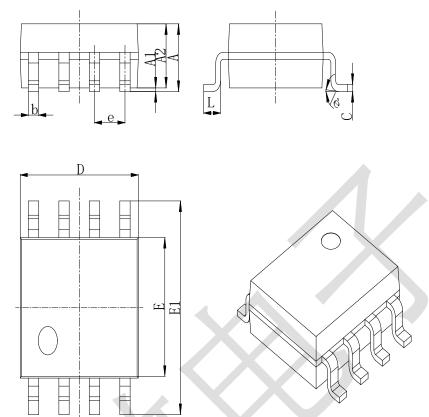


图 5


- 注: 1. 采用A, B线写码方式,写码时,写码器/控制器无需与第一个IC的ADRI相连。
 - 2. DO端输出驱动TM1804, TM1925D, TM1926D等归零码系列IC。
 - 3. SOP8 封装,体积小,一是可做窄板,二是可做系列芯片的通用板。

2、元器件选值表

 R_Z 选值表如下

元件	24V	12V	5V
$R_{Z (\Omega)}$	2K∼2.4K	750~820	82
R_{I} (Ω)	300~500	300~500	
R_{O} (Ω)	300~500	300~500	
R_{A} (Ω)	3K∼5K	3K∼5K	3K∼5K
$R_{B(\Omega)}$	3K∼5K	3K∼5K	3K∼5K
R_{DO}	120	120	无

封装示意图: SOP8

Cl 1	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1. 350	1.750	0.053	0.069	
A1	0.100	0. 250	0.004	0.010	
A2	1, 350	1. 550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0. 250	0.006	0.010	
D	4. 700	5. 100	0. 185	0. 200	
Е	3.800	4.000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270	(BSC)	0. 050 (BS	SC)	
L	0. 400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)